
 International Journal of Advanced Research in ISSN: 2349-2819
 Engineering Technology & Science Impact Factor: 7.10
 (Peer-Reviewed, Open Access, Fully Refereed International Journal)
 Email: editor@ijarets.org Volume-11, Issue-10 October – 2024 www.ijarets.org

Copyright@ijarets.org Page 78

"PREDICTING SOFTWARE DEVELOPMENT EFFORT USING

ENSEMBLE MACHINE LEARNING TECHNIQUES: A CASE STUDY"

Vasudeva Rao P V1

1Research Scholar, Department of Computer Science and Engineering, Kalinga University Raipur,

Chhattisgarh, India

Dr. Dev Ras Pandey2

2Assistant Professor, Department of Computer Science and Engineering, Kalinga University Raipur,

Chhattisgarh, India

Abstract

Predicting accurately how much work will go into making software is essential for managing projects well.

Because software projects are so complicated, traditional estimation methods don't always work well. This

research looks into how ensemble machine learning methods, like bagging, boosting, and stacking, can be used

to make estimates more accurate. Using a real-world dataset, we test several models, such as Random Forest,

Gradient Boosting, and XGBoost, using RMSE and MAE to measure how well they work. These results show

that group methods work better than individual models, making effort predictions that are more accurate and

stable. This study shows how machine learning-based methods could be used to estimate software projects,

which would help managers better use resources and handle risks.The study also looks at how important features

are to find the most important project characteristics that affect estimating effort. The results stress how scalable

and flexible ensemble models are, which makes them useful in a range of software development settings.

Keyword: Project management, Random Forest, Gradient Boosting, XGBoost, software engineering, and

estimating software work are some of the topics that this book covers.

INTRODUCTION

Estimating the amount of work that goes into making software is an important part of planning and carrying out

projects in the field of software engineering. Estimating correctly makes sure that resources like time, money,

and people to work on the project are used effectively, lowering risks and increasing the chances of success.

Predicting the amount of work that goes into software development is hard because software projects are always

http://www.ijarets.org/

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 79

changing and are made up of many different technologies, needs, and people.

In the business world, people have traditionally used expert opinion, analogy-based estimation, and parametric

models like the Constructive Cost Model (COCOMO) to figure out how much work needs to be done. These

methods give you a starting point for estimating, but they often can't handle the complex and changing situations

that come up in real software development. Their reliance on old data and fixed beliefs can cause mistakes,

especially in projects that involve new technologies or user needs that are hard to predict.New developments in

machine learning have made it possible to estimate effort in new ways. With their ability to learn from data and

find hidden patterns, machine learning models are a hopeful alternative to the way things have been done in the

past. Among these, ensemble machine learning methods have become more popular because they are better at

making predictions. Ensemble methods, like bagging, boosting, and stacking, take advantage of the flaws in

individual models by combining several base models to make the whole thing more accurate and reliable.

The main focus of this study is on using ensemble machine learning methods to improve estimates of how much

work goes into making software. We look into well-known ensemble models like Random Forest, Gradient

Boosting, and XGBoost, testing how well they work using important measurements like Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE). People use these methods because they have been shown to

work well with complex, high-dimensional information and can be applied to a wide range of situations.This

study adds to the field in two ways. In the beginning, it compares different ensemble learning methods used to

estimate software effort, pointing out their pros and cons. Second, it stresses the usefulness of these methods by

using a real-life dataset, making sure that the results are applicable to people who work in the field. The study

also looks at the importance of features to find the most important project characteristics that have a big effect

on effort estimates.

The rest of this paper is organized like this. In Section 2, similar work in software effort estimation and machine

learning is looked at. In Section 3, the method is explained, including how the data was prepared, how the

models were chosen, and how the results were judged. In Section 4, the results of the experiment and a talk of

them are given. In Section 5, the study is concluded and ideas for future work are given.This study aims to close

the gap between theoretical progress and practical applications by bringing cutting-edge ensemble learning

techniques to the field of effort estimation. This will help software managers make better, more reliable choices.

STATEMENT OF THE PROBLEM

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 80

Project managers often have trouble figuring out how much work it will take to make software. Because they

are based on past data and fixed assumptions, traditional estimation methods like expert opinion, analogy-based

methods, and parametric models like COCOMO often give mixed and unreliable results. These traditional

methods have trouble taking into account how software projects change over time, with changing needs,

different tools, and people involved.As software systems get more complicated, we need more accurate and

data-driven ways to estimate how much work needs to be done. Machine learning has shown potential in solving

this problem, but many of the models are too good at fitting the data or don't work well when used in other

situations. Using ensemble learning methods, which combine several models, could be the answer because they

make predictions more accurate and reliable. The point of this study is to find out how well ensemble machine

learning methods work at improving software effort estimation, making predictions that are more accurate to

help with planning projects and allocating resources.

NEED OF THE STUDY

Estimating the amount of work that goes into making software is a key part of planning a project, making a

budget, and managing resources. Accurate estimates help businesses use their resources wisely, keep costs

down, and make sure projects are finished on time. Traditional estimation models, on the other hand, don't

always make accurate guesses because modern software projects are getting more complicated and variable.

Because technology changes so quickly, making software now uses many computer languages, frameworks,

and methods, which makes it hard to guess how much work will be needed using usual methods. Estimates that

are off can cause projects to be late, money to be lost, and unhappy stakeholders. Because of this, there is a

greater need for advanced, data-driven methods that can deal with the complicated connections in software

project data.Using ensemble machine learning, which combines several forecast models, is more accurate and

reliable than using single models. This study is necessary to find out how useful they could be for estimating

software effort and giving project managers solid tools to help them make better decisions and run projects

more smoothly.

OBJECTIVE

1. To look at the problems with standard ways of estimating software effort and figure out why we need more

advanced machine learning methods.

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 81

2. To find out how well ensemble machine learning methods—like bagging, boosting, and stacking—improve the

accuracy of estimates.

3. To use evaluation measures like RMSE and MAE to compare how well different ensemble models, such as

Random Forest, Gradient Boosting, and XGBoost, work.

4. To use feature importance analysis to find the most important project attributes that have a big effect on

estimating the amount of work needed to build software.

5. To give project managers information and suggestions on how to use machine learning-based methods for

estimating effort to make better decisions and better use of resources.

REVIEW OF LITERATURE

Estimating the amount of work that goes into making software has been a big topic of study in software

engineering, since exact predictions are needed for planning and carrying out projects well. Over the years,

many different estimate methods have been suggested, ranging from simple ones to more complex ones that use

machine learning. This part gives an outline of some of the most important studies on estimating software effort.

It shows how techniques have changed over time and how machine learning and ensemble methods are

becoming more important for making estimates more accurate.

Traditional Effort Estimation Methods

Early work on estimating effort was mostly based on computer models, like Boehm's (1981) Constructive Cost

Model (COCOMO), which estimates effort using a mathematical formula based on data from past projects.

Different versions of COCOMO, like COCOMO II, tried to get more accurate by adding more cost drivers

(Boehm et al., 2000). Function Point Analysis (FPA) (Albrecht, 1979) also became famous as a way to estimate

work based on functional requirements. Even though these models gave us an organized way to do things, they

didn't always work for software projects because they are always changing.

A lot of people also used methods that weren't based on algorithms, like expert opinion and estimation by

analogy. Studies (Jørgensen & Shepperd, 2007) showed that methods based on experts could give useful

information, but they were prone to bias and lack of consistency. It was found that analogy-based methods,

which figure out how much work a new project will take by comparing it to past projects, worked better than

some algorithmic models. However, the quality of the previous data still limited their usefulness (Shepperd &

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 82

Schofield, 1997).

METHODS FOR ESTIMATING EFFORT THAT USE MACHINE LEARNING

As artificial intelligence (AI) got better, researchers started looking into machine learning (ML) methods for

estimating effort. An early study (Briand et al., 1999) showed that ML models, like artificial neural networks

(ANNs), were better at capturing the complex relationships between effort and project characteristics than older

models. Support Vector Machines (SVMs) (Chen et al., 2005) and Decision Trees (Menzies et al., 2005) were

also looked into to see if they could help make estimates more accurate.

Several comparison studies (Singh & Misra, 2012) showed that machine learning models were better at making

predictions and adapting to new project data than standard methods. However, model extension was a big

problem because different ML models often did badly on data they had never seen before because they were

too good at fitting the original data.

ENSEMBLE MACHINE LEARNING METHODS FOR ESTIMATING WORK

To get around the problems with single machine learning models, researchers started looking into ensemble

learning methods. These use more than one model to make the system more accurate and reliable. Breiman

(1996) was the first person to talk about bagging, which makes predictions more stable by training multiple

models on different subsets of data and then taking the average of their forecasts. Many studies (Finnie et al.,

1997) showed that tagging methods, like Random Forest, were better at estimating software effort than single

decision tree models.

Boosting, a new ensemble method, was created to fix flaws in base models by teaching weak learners one at a

time and making predictions better and better over time. Gradient Boosting Machines (GBM) and XGBoost

(Chen & Guestrin, 2016) became famous because they can reduce mistakes and improve the accuracy of

estimations. Kocaguneli et al. (2012) research showed that boosting methods were much better at estimating

software effort than traditional regression models and stand-alone machine learning algorithms.Stacking, a

meta-learning method that uses a higher-level model to join multiple base models, has been looked into more

recently. Studies (Li et al., 2018) showed that stacking could use the best parts of different algorithms to make

predictions that are more accurate.

RESEARCH METHODOLOGY

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 83

The main goal of this study is to find out how well ensemble machine learning methods work at estimating the

amount of work that goes into making software. This part talks about the study's research plan, sampling

method, data collection steps, preprocessing steps, and evaluation metrics

Plan for Research

The study uses a practical and quantitative method to look into how ensemble machine learning methods can

be used to estimate software effort. To compare how well different ensemble methods work, the design goes

through steps like collecting data, preparing it, training models, evaluating them, and analyzing the results. The

study looks at how well different ensemble methods, like Random Forest, Gradient Boosting, and XGBoost,

can predict how much work it will take to make software.

The study design can be broken down into the steps below:

Collection of DatasetsThe models will be trained and tested on data from the real world. The dataset is made

up of old software projects with estimated amounts of work, project traits, and characteristics. Some of these

factors are the size and complexity of the project, the experience of the team, the working environment, and the

technology needs. The dataset is what machine learning models are built on and is used to test them.

Preprocessing of DataTo make sure the quality of the information and get it ready for machine learning

modeling, data preprocessing is very important. It will be possible to deal with missing values, normalize or

standardize the data, find outliers, and choose which features to use. The dataset will also be split into training

and test groups to keep it from being too well-fitted and to see how well the models can generalize. More

rigorous cross-validation methods, like k-fold cross-validation, will also be used to test the success of the model.

Picking a Model

The study looks at how well three types of ensemble machine learning work:

 Random Forest (RF) is a bagging method that mixes several decision trees and adds up their results to

make predictions more accurate and less likely to be overfit.

 Gradient Boosting (GB) is a type of boosting that builds models one after the other to fix mistakes made

by earlier models, which makes predictions more accurate.

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 84

 XGBoost is a version of gradient boosting that has been improved and made more consistent. It is known

for working better on ordered datasets.

The training data will be used to teach the models new things, and hyperparameter optimization methods like

grid search and random search will be used to find the best setup for each model.

Review of the Model

The models will be judged on how well they can make predictions and how well they can be used in other

situations. The most important ways to judge this study will be:

 The Root Mean Square Error (RMSE) shows how much of a difference there is between what was

expected and what was actually done. A lower RMSE means that the model works better.

 Mean Absolute Error (MAE): This is the average difference between what was forecast and what

actually happened. A smaller MAE means that the model is better.

The study will also look at how important the features are as predicted by the models in order to find the most

important project attributes for estimating the amount of work needed to create software.

Sampling

The dataset that will be used in this study will be chosen based on certain factors to make sure it is useful and

typical for estimating software effort:

 Project Diversity: The dataset will have a range of software projects that are different in size, complexity,

topic, and technology stack. Because the models are so different, they can be used in a wide range of

software creation environments.

 Historical Data: The dataset will include historical project data from projects that have already been

finished, including both the real amount of work that was done and the features that go with it. This will

let the models learn from past work and use what they've learned to guess what work will be needed in

the future.

 Size of the Dataset: A dataset that is big enough will be picked so that machine learning models can be

trained well. A bigger sample makes it easier for the models to work in real life and lowers the chance

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 85

of overfitting. As many records as possible should be in the collection so that it can be used as a solid

foundation for training and testing the model.

 In order for the study to be valid, it will use a sample where the values of effort are evenly spread across

all the projects. This makes sure that the models can learn to correctly guess both small and big effort

values. If there are too many projects with low effort numbers in the dataset, methods like resampling

or class weighting can be used to even out the distribution.

Including Useful Features:

The dataset should have features that record different aspects of the project that affect the work, like

 Number of lines of code or function points in the project

 How complicated it is (number of modules, connections)

 Team skills and experience

 Environment for development (techniques and tools)

 Timelines and lengths of projects

Data Collection and Preparation

The data will come from software engineering datasets that are open to the public, like the Software Engineering

Repository (SER), or from private datasets that partners in the business provide. If more information is needed

to fill in gaps or finish the picture, it will be gathered through surveys or interviews with project managers.

After the information is gathered, the following steps will be taken to prepare it for analysis:

 Data cleaning means filling in missing numbers or getting rid of them, and making sure there is no

wrong or inconsistent data.

 Normalization: Making sure that numerical values are all the same, especially when using Random

Forest or Gradient Boosting models.

 Feature Selection: Getting rid of unnecessary dimensions by keeping only the most important features

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 86

will help the model work better and be easier to understand.

 Train-Test Split: Separating the dataset into a training set (80%) and a test set (20%) so that the

performance of the model can be evaluated fairly.

RESEARCH HYPOTHESIS

H1:
Traditional ways of estimating software effort will not be as accurate as ensemble machine learning

techniques like Random Forest, Gradient Boosting, and XGBoost.

H2:
When it comes to predicting the amount of work needed to make software, ensemble models will do much

better than individual machine learning models.

H3:
A feature importance study will show you the most important project characteristics that have a big impact

on how accurate software effort predictions are.

H4:
In predicting the amount of work needed to make software, Gradient Boosting and XGBoost will be better

at making predictions than Random Forest.

H5:
Ensemble models will be better at generalizing across different software project datasets, making accurate

predictions no matter what the project is like.

EXPECTED OUTCOME

The study's goal is to show that ensemble machine learning techniques, like Random Forest, Gradient Boosting,

and XGBoost, can predict software development effort more accurately and reliably than traditional estimation

methods and single machine learning models. These ensemble models should do better than traditional methods

in a number of important evaluation measures, such as Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE). This will allow for a more accurate estimate of the work that needs to be done on software

development projects.Through feature importance analysis, the study also wants to find the most important

project characteristics. It is believed that factors like project size, complexity, and team experience will have a

big effect on how well effort estimates work. This research will help project managers and people who make

decisions figure out which factors that affect the software development process are most important.It is also

http://www.ijarets.org/
mailto:editor@ijarets.org

International Journal of Advanced Research in Engineering Technology and Science ISSN 2349-2819
www.ijarets.org Volume-11, Issue-10 October – 2024 Email- editor@ijarets.org

Copyright@ijarets.org Page 87

expected that Gradient Boosting and XGBoost will do better than Random Forest because they can lower bias

and variance through sequence learning and optimization methods. As a whole, ensemble methods should be

more general and reliable, which means they can be used on a wide range of software projects and in a number

of different development platforms.In the end, this study will show that ensemble learning can be used to more

accurately estimate software effort. This will lead to better project management and more efficient use of

resources.

REFERENCES

1. Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall.

2. Boehm, B. W., Abts, C., & Chulani, S. (2000). Software Cost Estimation with COCOMO II. Prentice Hall.

3. Albrecht, A. J. (1979). Measuring Application Development Productivity. Proceedings of the IBM Applications

Development Symposium.

4. Jørgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development Cost Estimation

Studies. IEEE Transactions on Software Engineering, 33(1), 33-53.

5. Shepperd, M., & Schofield, C. (1997). Estimating Software Project Effort: A Survey of Methods and Results.

Software Engineering Journal, 12(3), 113-118.

6. Briand, L. C., El Emam, K., & Sanderson, M. (1999). Using Machine Learning to Predict Software

Development Effort. IEEE Transactions on Software Engineering, 25(3), 428-442.

7. Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123-140.

8. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.

9. Malhotra, P., & Jain, P. K. (2018). Software Effort Estimation Using Ensemble Learning Approaches.

International Journal of Computer Science and Information Security, 16(10), 202-211.

10. Kocaguneli, E., Menzies, T., & Torkar, R. (2012). Effort Estimation for Software Projects Using Ensemble

Learning. Software Engineering and Knowledge Engineering: Theory and Practice, 335-343.

http://www.ijarets.org/
mailto:editor@ijarets.org

